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Adjacent oceanic water masses with the same density but different concentrations
of heat and salt generate interleaving accompanied by double-diffusive processes.
Laboratory experiments with salt and sugar concentrations are used to study the
interleaving process. Most double-diffusive studies have treated vertical configurations
in which one of the two components contains a destabilizing feature, salt above fresh
water for salt fingers or warm underlying cold for the diffusive case. However, when
the fluid lacks any gravitationally unstable feature, i.e. no gravitational potential
energy is available in either component, the question arises as to what the source of
energy is to drive the system. Such a case is discussed here and it is shown that the
ultimate source of the energy is the chemical potential associated with the different
property distributions. Diffusion creates a destabilizing property distribution and then
enables the resulting potential energy to be released.

1. Introduction
In a recent article Thompson & Veronis (2005) reported the results of laboratory

experiments on double diffusion in which the initial state involved distributions of
salt (T ) and sugar (S), both of which were gravitationally stable. The experimental
layer had a uniform layer of salt on one side and a uniform layer of sugar of the
same density adjacent to it, the two separated by a vertical barrier at the midpoint.
The layer sat on a reservoir of greater density in both sugar and salt. The experiment
started when the barrier was withdrawn and motion ensued because salt, which has
the larger diffusivity coefficient, diffused up from the reservoir thereby making the
bottom of the sugar layer denser. Consequently, this denser layer slid under the salt
layer and generated an overturning circulation in which the interface dividing the two
layers gradually tilted and flattened until the configuration became one of two layers
with the lighter (mostly salt) layer on top. Figure 1 is a photo of one such experiment
some time after the barrier was removed.

A similar, but somewhat weaker, motion can be observed when the underlying
reservoir is replaced by a solid boundary, as Ruddick & Turner (1979) observed.
In both cases the question that arises is how the kinetic energy of the system is
generated given that the gravitational potential energy is initially at a minimum, so
that a vertical exchange of parcels would not release potential energy. The purpose
of this note is to try to answer that question by evaluating the energy-releasing term
using the diffusion equations for salt and sugar in the gravitational term. The model
used has no bottom reservoir since it is simpler but still contains the essential features.
The analysis is for a two-dimensional system with x horizontal and z vertical.
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Figure 1. The dark fluid is the sugar solution that has become denser because of downward
diffusion of salt from the overlying salt solution. The slanting interface is nearly linear and the
fronts penetrate laterally with nearly constant velocity.

2. Analysis of the energetics
The Boussinesq approximation is assumed to be valid so that the same velocity is

used for all of the equations; otherwise, the equations for the conservation of T and
S would involve different mass-weighted velocities. In the following development the
density, ρ, which appears in the gravitational term, refers to the density associated
with the S and T concentrations. The kinetic energy equation integrated vertically
from bottom to top (−h to 0) and horizontally from left to right (−L to L) and in
time (0 to t) is
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where ρ00 is the constant density of the mean state, and the boundary conditions are
zero velocity along the sides and the bottom and zero shear and zero vertical velocity
along the top. (To lowest order the free surface is assumed to be flat.) The boundaries
are non-diffusive, i.e. ∂T /∂n= 0 = ∂S/∂n. A cursory inspection of the gravitational
term in (1) indicates that no potential energy can be released because there is no
lighter fluid that can be carried upward. Clearly, a more subtle treatment of that term
is required to show that gravity releases potential energy.

In order to evaluate the (gravitational) energy releasing term we shall use a linear
approximation to the equation of state

ρ = αT + βS (2)

where α/ρ00 and β/ρ00 are coefficients of contraction of T and S and use of α and
β as constants involves an error of less than 1 % for the range of values of T and S

in the experiments. From here on we shall use the symbols T and S to represent the
concentration densities, αT and βS, so that ρ = T + S.

The equations for the conservation of salt and sugar provide the means for
evaluating the gravitational term:
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(With constant α and β these equations apply to αT and βS as well as to T and S.)
In the experiments the right half of the tank is initially occupied by the concentration,
T = T0, and the left half by S = S0, and the density of each concentration equals
ρ0. So integrating with respect to x and t and taking the side boundaries to be
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non-diffusive yields∫ L
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Next, integrating with respect to z from z to 0 yields∫ 0
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Now adding (7) and (8), rearranging terms and making use of the linear equation of
state, ρ = T + S, yields∫ t
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where we have used the fact that T0 = S0 = ρ0, since each original half-layer contains
only one component, each of which has the same density, ρ0.

And finally, integrating with respect to z from −h to 0 yields the required expression
for the energy-releasing term∫ 0

−h

∫ t

0

∫ L

−L

wρ dx dt dz =

∫ 0

−h

∫ 0

z

∫ L

−L

ρ dx dz′ dz − h2Lρ0

+

[
κT

∫ t

0

∫ L

−L

T dx dt + κS

∫ t

0

∫ L

−L

S dx dt

]0

−h

. (10)

We have no theoretical solution to this system so we rely on experimental data
to evaluate the terms on the right-hand side of (10). Marshall Ward and the author
carried out a number of lock exchange experiments during the 2004 GFD program
at WHOI. The ones without rotation are similar to those by Thompson & Veronis
(2005) but there is no bottom reservoir. A preliminary report is in Ward (2004).
Additional experiments were conducted during the summer program of 2005, from
which the measurements of S and T reported below have been taken. Throughout
each experiment diffusion of both salt and sugar takes place across the sloping
interface, and since salt diffuses faster than sugar, there is a decrease in density in the
upper (salty) layer and an increase in density in the lower layer.

We obtained vertical profiles of the conductivity of the fluid at the centre location
and measured the refractive index at the top and bottom. Therefore, we do not have
a profile of the density but only the values at the top and bottom. We obtain a
conservative estimate of the redistribution of density by approximating the profile by
a straight line that joins the top and bottom measured values, which are ρ0−�ρ/2 and
ρ0 + �ρ/2, respectively. (This is an underestimate of the density difference between
the upper and lower parts. We made some crude measurements of the densities
near the interface and found that both the upper and the lower parts were more
uniform vertically than a linear profile indicates. Thus, choosing a linear profile is
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Figure 2. (a) Mass fraction of S and (b) T near the top of the upper layer and the bottom of
the lower layer at the middle position in the experiment as a function of time. Note the nearly
linear dependence on time after an initial adjustment.

conservative.) Therefore, the profile from −h to 0 is given by

ρ0 − �ρ(1/2 + z/h),

and the first integral on the right-hand side of (10) is

L[h2ρ0 − �ρh2/6].

The ρ0 terms on the right-hand side of (10) cancel so the net result of the first two
terms is

−L[�ρh2/6]. (11)

The value of �ρ is not known but the important issue is the sign of the term. The
two diffusion terms in (10) were evaluated using the data in figure 2 which shows
S and T values near the top and bottom boundaries as functions of time up to
t = 900 s, by which time the sloping interface had intersected the ends and had
become nearly horizontal. Crudely, the effect of the integration over the horizontal is
tantamount to multiplication by 2L (which is an overestimate), and since the values
at the top and bottom depend essentially linearly on time (apart from a very noisy
initial disturbance which contributes little to the integrals), the diffusion terms can
be evaluated easily. They contribute a positive value to the right-hand side of (10)
and, therefore, counteract the effect of (11). The diffusivities are very small (0.5 and
1.5 × 10−5 cm2 s−1 for sugar and salt, respectively) and the net result is that the two
diffusion terms turn out to be about 2% of the value given by (11). This is an
overestimate of the effect of diffusion at the top and bottom boundaries during the
times shown so the overall result, including (11), is a conservative estimate of the
energy-releasing term. (Of course, over a very much longer period the (usual) effects
of diffusion will serve to smooth out all gradients.)

Thus, substituting the negative term (11) for wρ on the right-hand side of (1) yields
a positive total energy-releasing term, which serves to balance part of the viscous
dissipation term. (The u · u term on the left-hand side balances the remainder.)

3. Discussion of results
It may seem strange that the diffusion terms in (10) contribute a negligible amount

to the total since diffusion plays such a critical role in the system. However, even
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though diffusion is essential, its main function during the evolution of the system is
catalytic. In the experiments we observed that salt diffuses downward from the upper
layer through the interface near the top of the lower layer thereby making the fluid
just below the interface denser; that dense fluid is then redistributed by means of a
clockwise circulation and ends up near the bottom. Similarly, the fluid in the upper
layer that has lost salt by diffusion just above the interface becomes lighter and is
redistributed by means of a clockwise circulation and ends up near the top of the
upper layer. The clockwise circulations occur after diffusion has created the density
differences, which are then convected to the vicinity of the boundaries much more
rapidly than diffusion could move them there. That can be seen in figure 2(b) where
the densities near the top and bottom start the same but quickly separate with lower
density at the top and higher density at the bottom. (The sugar redistribution partially
compensates for the salt redistribution but it is less effective because of the smaller
diffusion coefficient.) The effect of diffusion across the interface continues to drive the
clockwise circulations and gradually decreases the concentration differences between
the two layers; overall diffusion, represented by the boundary terms in (10), also acts
to decrease the differences. These effects are indicated in figures 2(a) and 2(b), which
show that gradually the concentration differences from top to bottom decrease.

The function of diffusion is similar to that in Bénard convection where diffusion
allows the fluid near the lower (upper) boundary to be heated (cooled) and therefore
be convected upward (downward), but it is the convective process that is essentially
responsible for the heat transport. So both here and in the Bénard case diffusion
serves to inject buoyancy where it can be subject to convection. There is a large
difference, however, since Bénard convection releases the potential energy that is
made available by imposed conditions at the top and bottom boundaries of the
system whereas here diffusion creates the potential energy to be released and it does
so in the interior of the fluid just above and below the sloping interface. From there
the clockwise circulations above and below the interface convect the unstable fluid to
the vicinity of the boundaries. The part of the diffusion that is negligible is the effect
from the diffusion terms themselves integrated over the entire system, apart from any
convective mechanism. And the odd and counterintuitive phenomenon here is that
the system ends up being even more stable than it was at the outset when it was
already in a state of ostensibly minimum potential energy.†

In connection with this description it is useful to recall the concept of a
thermodynamic state of a fluid. If two samples can exist in contact with each other
without a change of properties, the two samples have the same state. Otherwise, their
states are different. In the setup that exists at the beginning of the experiment described
in this article diffusion immediately causes a change at the interface between the sugar
and the salt half-layers. Therefore, the system is not in an equilibrium thermodynamic
state. The energy that is released comes from the chemical potential of the fluid and is
not evident in the gravitational potential energy of the initial state, although the latter
is activated as soon as diffusion becomes active. The role of the chemical potential is

† Paul Linden has suggested that the present setup is not basically different from either the finger
or the diffusive one-dimensional case, where, in the absence of diffusion, nothing happens. But if
one were to remove the stabilizing property, flow ensues because of gravity. In our case the same
is true although without diffusion and in the absence of one of the properties the flow created is
a gravity current. With both properties present in both cases diffusion generates density anomalies
that release potential energy.
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manifested through the diffusion terms that appear in the conservation equations of
salt and sugar.

I am grateful to Marshall Ward, a fellow of the 2004 program, who came back to
Woods Hole in summer 2005 to run the experiments that provided the data on the
concentrations of salt and sugar that were used in this article. The article was written
up at the GFD2005 program.
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